Автомобильный сайт - За рулем

Автомобильный сайт - За рулем

» » Полосовой фильтр на транзисторе схема. Активный фильтр низких частот (ФНЧ) для сабвуфера

Полосовой фильтр на транзисторе схема. Активный фильтр низких частот (ФНЧ) для сабвуфера


Доброго времени суток, уважаемые читатели! Сегодня речь пойдёт о сборке простого фильтра низких частот. Но несмотря на свою простоту, по качеству фильтр не уступает магазинным аналогам. Итак, приступим!

Основные характеристики фильтра

  • Частота среза 300 Гц, более высокие частоты отсекаются;
  • Питающее напряжение 9-30 Вольт;
  • Потребляет фильтр 7 мА.

Схема

Схема фильтра представлена на следующем рисунке:


Список деталей:
  • DD1 - BA4558;
  • VD1 - Д814Б;
  • C1, C2 - 10 мкФ;
  • С3 - 0,033 мкФ;
  • С4 - 220 нф;
  • С5 - 100 нф;
  • С6 - 100 мкФ;
  • С7 - 10 мкФ;
  • С8 - 100 нф;
  • R1, R2 - 15 кОм;
  • R3, R4 - 100 кОм;
  • R5 - 47 кОм;
  • R6, R7 - 10 кОм;
  • R8 - 1 кОм;
  • R9 - 100 кОм - переменный;
  • R10 - 100 кОм;
  • R11 - 2 кОм.

Изготовление фильтра низких частот

На резисторе R11, конденсаторе C6 и стабилитроне VD1 собран блок стабилизации напряжения.


Если напряжение питания меньше 15 Вольт, то R11 следует исключить.
На компонентах R1, R2, С1, С2 собран сумматор входных сигналов.


Его можно исключить, если на вход подаётся моносигнал. Источник сигнала при этом следует подключать напрямую ко второму контакту микросхемы.
DD1.1 усиливает входной сигнал, а на DD1.2 собран непосредственно сам фильтр.


Конденсатор С7 фильтрует выходной сигнал, на R9, R10, С8 реализован регулятор звука, его также можно исключить и снимать сигнал с минусовой ножки С7.
Со схемой разобрались, теперь давайте перейдём к изготовлению печатной платы. Для этого нам понадобится стеклотекстолит размерами 2х4 см.
Файл платы фильтра низких частот:

(cкачиваний: 420)



Шлифуем до блеска мелкозернистой наждачной бумагой, обезжириваем поверхность спиртом. Распечатываем этот рисунок, переносим на текстолит методом ЛУТ.



При необходимости дорисовываем дорожки лаком.
Теперь следует приготовить раствор для травления: растворяем 1 часть лимонной кислоты в трёх частях перекиси водорода (пропорция 1:3 соответственно). Добавляем в раствор щепотку соли, она - катализатор и в процессе травления не участвует.
В приготовленный раствор погружаем плату. Ждём растворения лишней меди с её поверхности. По окончании процесса травления достаём нашу плату, промываем проточной водой и снимаем тонер ацетоном.


Компоненты впаивайте, ориентируясь на это фото:


В первой версии рисунка я не сделал отверстие под R4, поэтому припаял его снизу, в документе для скачивания этот недостаток устранён.
На обратной стороне платы необходимо припаять перемычку:

Юрий Садиков
г. Москва

В статье приведены результаты работ по созданию устройства, представляющего собой комплект активных фильтров для построения высококачественных трехполосных усилителей низкой частоты классов HiFi и HiEnd.

В процессе предварительных исследований суммарной АЧХ трехполосного усилителя, построенного с использованием трех активных фильтров второго порядка, выяснилось, что эта характеристика при любых частотах стыков фильтров обладает весьма высокой неравномерностью. При этом она весьма критична к точности настройки фильтров. Даже при небольшом рассогласовании неравномерность суммарной АЧХ может составить 10…15 дБ!

МАСТЕР КИТ выпускает набор NM2116, из которого можно собрать комплект фильтров, построенный на базе двух фильтров и вычитающего сумматора, не имеющий вышеперечисленных недостатков. Разработанное устройство малочувствительно к параметрам частот среза отдельных фильтров и при этом обеспечивает высоколинейную суммарную АЧХ.

Основными элементами современной высококачественной звуковоспроизводящей аппаратуры являются акустические системы (АС).

Самыми простыми и дешевыми являются однополосные АС, имеющие в своем составе один громкоговоритель. Такие акустические системы не способны с высоким качеством работать в широком диапазоне частот в силу использования одного громкоговорителя (головка громкоговорителя - ГГ). При воспроизведении разных частот к ГГ предъявляются различные требования. На низких частотах (НЧ) динамик должен обладать большим и жестким диффузором, низкой резонансной частотой и иметь большой ход (для прокачки большого объема воздуха). А на высоких частотах (ВЧ) наоборот – необходим небольшой легкий но твердый диффузор с малым ходом. Все эти характеристики совместить в одном громкоговорителе практически невозможно (несмотря на многочисленные попытки), поэтому одиночный громкоговоритель имеет высокую частотную неравномерность. Кроме этого в широкополосных громкоговорителях существует эффект интермодуляции, который проявляется в модуляции высокочастотных компонент звукового сигнала низкочастотными. В результате звуковая картина нарушается. Традиционным решением этой проблемы является разделение воспроизводимого диапазона частот на поддиапазоны и построение акустических систем на базе нескольких динамиков на каждый выбранный частотный поддиапазон.

Пассивные и активные разделительные электрические фильтры

Для снижения уровня интермодуляционных искажений перед громкоговорителями устанавливаются электрические разделительные фильтры. Эти фильтры также выполняют функцию распределения энергии звукового сигнала между ГГ. Их рассчитывают на определенную частоту разделения, за пределами которой фильтр обеспечивает выбранную величину затухания, выражаемую в децибелах на октаву. Крутизна затухания разделительного фильтра зависит от схемы его построения. Фильтр первого порядка обеспечивазатухание 6 дБ/окт, второго порядка - 12 дБ/окт, а третьего порядка - 18 дБ/окт. Чаще всего в АС используются фильтры второго порядка. Фильтры более высоких порядков применяются в АС редко из-за сложной реализации точных значений элементов и отсутствия потребности иметь более высокие значения крутизны затухания.

Частота разделения фильтров зависит от параметров применяемых ГГ и от свойств слуха. Наилучший выбор частоты разделения - при котором каждый ГГ АС работает в пределах области поршневого действия диффузора. Однако при этом АС должна иметь много частот разделения (соответственно ГГ), что значительно увеличивает ее стоимость. Технически обосновано, что для качественного звуковоспроизведения достаточно применять трехполосное разделение частот. Однако на практике существуют 4-х, 5-и и даже 6-и полосные акустические системы. Первую (низкую) частоту разделения выбирают в диапазоне 200…400 Гц, а вторую (среднюю) частоту разделения в диапазоне 2500...4000 Гц.

Традиционно фильтры изготавливаются с применением пассивных L, C, R элементов, и устанавливаются непосредственно на выходе оконечного усилителя мощности (УМ) в корпусе АС, согласно рис.1.

Рис.1. Традиционное исполнение АС.

Однако у подобного исполнения существует ряд недостатков. Во первых, для обеспечения необходимых частот среза приходится работать с достаточно большими индуктивностями, поскольку необходимо выполнить одновременно два условия – обеспечить необходимую частоту среза и обеспечить согласование фильтра с ГГ (иными словами нельзя уменьшить индуктивность за счет увеличения емкости, входящей в состав фильтра). Намотку катушек индуктивности желательно производить на каркасах без применения ферромагнетиков из-за существенной нелинейности их кривой намагниченности. Соответственно, воздушные катушки индуктивности получаются достаточно громоздкими. Кроме всего существует погрешность намотки, которая не позволяет обеспечить точно рассчитанную частоту среза.

Провод, которым ведется намотка катушек, обладает конечным омическим сопротивлением, что в свою очередь, приводит к уменьшению КПД системы в целом и преобразованием части полезной мощности УМ в тепло. Особенно заметно это проявляется в автомобильных усилителях, где питающее напряжение ограничено 12 В. Поэтому для построения автомобильных стереосистем часто применяют ГГ пониженного сопротивления обмотки (~2…4 Ом). В такой системе введение дополнительного сопротивления фильтра порядка 0,5 Ом может привести к уменьшению выходной мощности на 30%…40%.

При проектировании высококачественного усилителя мощности стараются свести к минимуму его выходное сопротивление для увеличения степени демпфирования ГГ. Применение пассивных фильтров заметно снижает степень демпфирования ГГ, поскольку последовательно с выходом усилителя подключается дополнительное реактивное сопротивление фильтра. Для слушателя это проявляется в появлении "бубнящих" басов.

Эффективным решением является использование не пассивных, а активных электронных фильтров, в которых все перечисленные недостатки отсутствуют. В отличие от пассивных фильтров, активные фильтры устанавливается до УМ как показано на рис.2.

Рис.2. Построение звуковоспроизводящего тракта с использованием активных фильтров.

Активные фильтры представляют собой RC фильтры на операционных усилителях (ОУ). Несложно построить активные фильтры звуковых частот любого порядка и с любой частотой среза. Расчет подобных фильтров производится по табличным коэффициентам с заранее выбранным типом фильтра, необходимым порядком и частотой среза.

Использование современных электронных компонентов позволяет изготавливать фильтры, обладающие минимальными значениями уровней собственных шумов, малым энергопотреблением, габаритами и простотой исполнения/повторения. В результате, использование активных фильтров приводит к увеличению степени демпфирования ГГ, снижает потери мощности, уменьшает искажения и увеличивает КПД звуковоспроизводящего тракта в целом.

К недостаткам такой архитектуры относится необходимость использования нескольких усилителей мощности и нескольких пар проводов для подключения акустических систем. Однако в настоящее время это не является критичным. Уровень современных технологий значительно снизил цену и размеры УМ. Кроме того, появилось достаточно много мощных усилителей в интегральном исполнении с отличными характеристиками, даже для профессионального применения. На сегодняшний день существует ряд ИМС с несколькими УМ в одном корпусе (фирма Panasonic выпускает ИМС RCN311W64A-P с 6-ю усилителями мощности специально для построения трехполосных стереосистем). Кроме того УМ можно расположить внутри АС и использовать короткие провода большого сечения для подключения динамиков, а входной сигнал подать по тонкому экранированному кабелю. Однако, если даже не удается установить УМ внутри АС, применение многожильных соединительных кабелей не представляет собой сложную проблему.

Моделирование и выбор оптимальной структуры активных фильтров

При построении блока активных фильтров было решено использовать структуру состоящую из фильтра высокой частоты (ФВЧ), фильтра средней частоты (полосовой фильтр, ФСЧ) и фильтра низкой частоты (ФНЧ).

Это схемотехническое решение было практически реализовано. Был построен блок активных фильтров НЧ, ВЧ и ПФ. В качестве модели трехполосной АС был выбран трехканальный сумматор, обеспечивающий суммирование частотных компонент, согласно рис.3.

Рис.3. Модель трехканальной АС с набором активных фильтров и ФСЧ на ПФ.

При снятии АЧХ такой системы, при оптимально подобранных частотах среза, ожидалось получить линейную зависимость. Но результаты оказались далеки от предполагаемых. В точках сопряжения характеристик фильтров наблюдались провалы/выбросы в зависимости от соотношения частот среза соседних фильтров. В итоге подбором значений частот среза не удалось привести проходную АЧХ системы к линейному виду. Нелинейность проходной характеристики свидетельствует о наличии частотных искажений в воспроизводимом музыкальном оформлении. Результаты эксперимента представлены на рис.4, рис.5 и рис.6. Рис.4 иллюстрирует сопряжение ФНЧ и ФВЧ по стандартному уровню 0.707. Как видно из рисунка в точке сопряжения результирующая АЧХ (показана красным цветом) имеет существенный провал. При раздвижении характеристик глубина и ширина провала увеличивается, соответственно. Рис.5 иллюстрирует сопряжение ФНЧ и ФВЧ по уровню 0.93 (сдвижка частотных характеристик фильтров). Эта зависимость иллюстрирует минимально достижимую неравномерность проходной АЧХ, путем подбора частот среза фильтров. Как видно из рисунка, зависимость явно не линейна. При этом частоты среза фильтров можно считать оптимальными для данной системы. При дальнейшем сдвиге частотных характеристик фильтров (сопряжение по уровню 0.97) наблюдается появление выброса в проходной АЧХ в точке стыка характеристик фильтров. Подобная ситуация показана на рис.6.

Рис.4. АЧХ ФНЧ (черный), АЧХ ФВЧ (черный) и проходная АЧХ (красный), согласование по уровню 0.707.

Рис.5. АЧХ ФНЧ (черный), АЧХ ФВЧ (черный) и проходная АЧХ (красный), согласование по уровню 0.93.

Рис.6. АЧХ ФНЧ (черный), АЧХ ФВЧ (черный) и проходная АЧХ (красный), согласование по уровню 0.97 и появление выброса.

Основной причиной нелинейности проходной АЧХ является наличие фазовых искажений на границах частот среза фильтров.

Решить подобную проблему позволяет построение среднечастотного фильтра не в виде полосового фильтра, а с использованием вычитающего сумматора на ОУ. Характеристика такого ФСЧ формируется в соответствии с формулой: Uсч = Uвх – Uнч - Uвч

Структура такой системы представлена на рис.7.

Рис.7. Модель трехканальной АС с набором активных фильтров и ФСЧ на вычитающем сумматоре.

При таком способе формирования канала средних частот пропадает необходимость в точной настройке соседних частот среза фильтров, т.к. среднечастотный сигнал формируется вычитанием из полного сигнала сигналов фильтров высоких и низких частот. Кроме обеспечения взаимодополняющих АЧХ, у фильтров получаются так же и комплементарные ФЧХ, что гарантирует отсутствие выбросов и провалов в суммарной АЧХ всей системы.

АЧХ среднечастотного звена с частотами среза Fср1 = 300 Гц и Fср2 = 3000 Гц приведена на рис. 8. По спаду АЧХ обеспечивается затухание не более 6 дБ/окт, что, как показывает практика, вполне достаточно для практической реализации ФСЧ и получения качественного звучания СЧ ГГ.

Рис.8. АЧХ фильтра средних частот.

Проходной коэффициент передачи такой системы с ФНЧ, ФВЧ и ФСЧ на вычитающем сумматоре получается линейным во всем диапазоне частот 20 Гц…20 кГц, согласно рис. 9. Полностью отсутствуют амплитудные и фазовые искажения, что обеспечивает кристальную чистоту воспроизводимого звукового сигнала.

Рис.9. АЧХ системы фильтров с ФСЧ на вычитающем сумматоре.

К недостаткам подобного решения можно отнести жесткие требования к точности номиналов резисторов R1, R2, R3 (согласно рис.10, на котором представлена электрическая схема вычитающего сумматора) обеспечивающих балансировку сумматора. Эти резисторы должны использоваться с допусками на точность не более 1%. Однако при возникновении проблем с приобретением таких резисторов потребуется сбалансировать сумматор используя вместо R1, R2 подстроечные резисторы.

Балансировка сумматора выполняется по следующей методике. Сначала на вход системы фильтров необходимо подать низкочастотное колебание с частотой, намного ниже частоты среза ФНЧ, например 100 Гц. Изменяя значение R1 необходимо установить минимальный уровень сигнала на выходе сумматора. Затем на вход системы фильтров подается колебание с частотой заведомо большей частоты среза ФВЧ, например 15 кГц. Изменяя значение R2 опять устанавливают минимальный уровень сигнала на выходе сумматора. Настройка закончена.

Рис.10. Схема вычитающего сумматора.

Методика расчета активных ФНЧ и ФВЧ

Как показывает теория для фильтрации частот звукового диапазона необходимо применять фильтры Баттерворта не более второго или третьего порядка, обеспечивающие минимальную неравномерность в полосе пропускания.

Схема ФНЧ второго порядка представлена на рис. 11. Его расчет производится по формуле:

где a1=1.4142 и b1=1.0 - табличные коэффициенты, а С1 и С2 выбираются из соотношения C2/C1 больше равно 4xb1/a12, причем не следует выбирать отношение C2/C1 много большим правой части неравенства.

Рис.11. Схема ФНЧ Баттерворта 2-го порядка.

Схема ФВЧ второго порядка представлена на рис. 12. Его расчет производится по формулам:

где C=C1=C2 (задаются перед расчетом), а a1=1.4142 и b1=1.0 - те же табличные коэффициенты.

Рис.12. Схема ФВЧ Баттерворта 2-го порядка.

Специалисты МАСТЕР КИТ разработали и исследовали характеристики такого блока фильтров, обладающего максимальной функциональностью и минимальными габаритами, что является существенным при применении устройства в быту. Использование современной элементной базы позволило обеспечить максимальное качество разработке.

Технические характеристики блока фильтров

Принципиальная электрическая схема активного фильтра показана на рис.13. Перечень элементов фильтра приведен в таблице.

Фильтр выполнен на четырех операционных усилителях. ОУ объединены в одном корпусе ИМС MC3403 (DA2). На DA1 (LM78L09) собран стабилизатор питающего напряжения с соответствующими фильтрующими емкостями: С1, С3 по входу и С4 по выходу. На резистивном делителе R2, R3 и конденсаторе С5 выполнена искусственная средняя точка.

На ОУ DA2.1 выполнен буферный каскад сопряжения выходного и входных сопротивлений источника сигнала и фильтров НЧ, ВЧ и СЧ. На ОУ DA2.2 собран фильтр НЧ, на ОУ DA2.3 - фильтр ВЧ. ОУ DA2.4 выполняет функцию формирователя полосового СЧ фильтра.

На контакты X3 и X4 подается напряжение питания, на контакты X1, X2 - входной сигнал. С контактов X5, X9 снимается отфильтрованный выходной сигнал для тракта НЧ; с X6, X8 – ВЧ и с X7, X10 – СЧ трактов соответственно.

Рис.13. Схема электрическая принципиальная активного трехполосного фильтр

Перечень элементов активного трехполосного фильтра

Позиция Наименование Примечание Кол.
С1, С4 0,1 мкФ Обозначение 104 2
C2, С10, C11, C12, C13, C14, C15 0,47 мкФ Обозначение 474 7
С3, C5 220 мкФ/16 В Замена 220 мкФ/25 В 2
С6, C8 1000 пФ Обозначение 102 2
С7 22 нФ Обозначение 223 1
С9 10 нФ Обозначение 103 1
DA1 78L09 1
DA1 MC3403 Замена LM324, LM2902 1
R1…R3 10 кОм 3
R8…R12 10 кОм Допуск не более 1%* 5
R4…R6 39 кОм 3
R7 75 кОм - 1
Колодка DIP-14 1
Штыревой разъем 2-х контактный 2
Штыревой разъем 3-х контактный 2

Внешний вид фильтра показан на рис.14, печатная плата – на рис.15, расположение элементов – на рис.16.

Конструктивно фильтр выполнен на печатной плате из фольгированного стеклотекстолита. Конструкция предусматривает установку платы в стандартный корпус BOX-Z24A, для этого предусмотрены монтажные отверстия по краям платы диаметром 4 и 8 мм. Плата в корпусе крепится двумя винтами-саморезами.

Рис.14. Внешний вид активного фильтра.

Рис.15. Печатная плата активного фильтра.

Рис.16. Расположение элементов на печатной плате активного фильтра.

При работе с электрическими сигналами часто требуется выделить из них какую-либо одну частоту или полосу частот (например, разделить шумовой и полезный сигналы). Для подобного разделения используются электрические фильтры. Активные фильтры, в отличие от пассивных, включают в себя ОУ (или другие активные элементы, например, транзисторы, электронные лампы) и обладают рядом преимуществ. Они обеспечивают более качественное разделение полос пропускания и затухания, в них сравнительно просто можно регулировать неравномерности частотной характеристики в области пропускания и затухания. Также в схемах активных фильтров обычно не используются катушки индуктивности. В схемах активных фильтров частотные характеристики определяются частотнозависимыми обратными связями.

Фильтр нижних частот

Схема фильтра нижних частот приведена на Рис. 12.

Рис. 12. Активный фильтр нижних частот.

Коэффициент передачи такого фильтра можно записать как

, (5)

и
. (6)

При К 0 >>1

Коэффициент передачи
в (5) оказывается таким же, как и у пассивного фильтра второго порядка, содержащего все три элемента (R , L , C ) (Рис. 13), для которого:

Рис. 14. АЧХ и ФЧХ активного фильтра низких частот для разных Q .

Если R 1 = R 3 = R и C 2 = C 4 = С (на Рис. 12), то коэффициент передачи можно записать как

Амплитудно- и фазочастотные характеристики активного фильтра низких частот для разных значений добротности Q показаны на Рис. 14 (параметры электрической схемы подобраны так, чтобы ω 0 = 200 рад/с). Из рисунка видно, что с ростом Q

Активный фильтр низких частот первого порядка реализуется схемой Рис. 15.

Рис. 15. Активный фильтр низких частот первого порядка.

Коэффициент передачи фильтра равен

.

Пассивный аналог этого фильтра представлен на Рис. 16.

Сравнивая эти коэффициенты передачи, видим, что при одинаковых постоянных времени τ’ 2 и τ модуль коэффициента передачи активного фильтра первого порядка будет в К 0 раз больше, чем у пассивного.

Рис. 17. Simulink -модель активного фильтра низких частот.

Исследовать АЧХ и ФЧХ рассматриваемого активного фильтра можно, например, в Simulink , используя блок передаточной функции. Для параметров электрической схемы К р = 1, ω 0 = 200 рад/с и Q = 10 Simulink -модель с блоком передаточной функции будет выглядеть, как показано на Рис. 17. АЧХ и ФЧХ можно получить с помощью LTI - viewer . Но в данном случае проще использовать команду MATLAB freqs . Ниже приведен листинг для получения графиковАЧХ и ФЧХ.

w0=2e2; %собственная частота

Q=10; %добротность

w=0:1:400; %диапазон частот

b=; %вектор числителя передаточной функции:

a=; %вектор знаменателя передаточной функции:

freqs(b,a,w); %расчет и построение АЧХ и ФЧХ

Амплитудно-частотные характеристики активного фильтра низких частот (для τ = 1с и К 0 = 1000) показаны на Рис.18. Из рисунка видно, что с ростом Q проявляется резонансный характер амплитудно-частотной характеристики.

Построим модель фильтра нижних частот в SimPowerSystems , используя созданный нами блок ОУ (operational amplifier ), как показано на Рис 19. Блок операционного усилителя является нелинейным, поэтому в настройках Simulation / Configuration Parameters Simulink для увеличения скорости расчета нужно использовать методы ode23tb или ode15s . Также необходимо разумно выбрать шаг по времени.

Рис. 18. АЧХ и ФЧХ активного фильтра низких частот (для τ = 1с).

Пусть R 1 = R 3 = R 6 = 100 Ом, R 5 = 190 Ом, C 2 = C 4 = 5*10 -5 Ф. Для случая, когда частота источника совпадает с собственной частотой системы ω 0 , сигнал на выходе фильтра достигает максимальной амплитуды (приведен на Рис. 20). Сигнал представляет собой установившиеся вынужденные колебания с частотой источника. На графике хорошо виден переходный процесс, вызванный включением схемы в момент времени t = 0. Также на графике видны отклонения сигнала от синусоидальной формы вблизи экстремумов. На Рис. 21. приведена увеличенная часть предыдущего графика. Эти отклонения можно объяснить насыщением ОУ (максимально допустимые значения напряжения на выходе ОУ ± 15 В). Очевидно, что при увеличении амплитуды сигнала источника увеличивается и область искажений сигнала на выходе

Рис. 19. Модель активного фильтра низких частот в SimPowerSystems .

Рис. 20. Сигнал на выходе активного фильтра низких частот.

Рис. 21. Фрагмент сигнала на выходе активного фильтра низких частот.

Здравствуйте, уважаемые радиолюбители! Сегодня хочу вам предложить схему фильтра НЧ для любого . Мною было опробовано не мало схем фильтров, из этого количества некоторые либо не устраивали по звуку, либо запускались с танцами под бубен, либо запускались вообще броском об стену! И вот в один прекрасный день лазил по одному форуму, и наткнулся на пост со схемой. Как писали, схема была найдена на каком-то форуме в давно забытой теме и очень его порадовала своей повторяемостью и хорошим звучанием баса. Большое спасибо этому человеку! Решил и я повторить эту схемку, так как давно в поисках хорошего ФНЧ и нужная микросхема была в наличии.

Скопируйте для увеличения

Сердце схемы, хорошо себя зарекомендовавшая TL074 (084), один сдвоенный переменный резистор, в таком нестандартном для меня включении, и немного пассивных компонентов (резисторы и конденсаторы). Решил, что для питания откажусь от всяких лишних стабилизаторов (7815 и 7915) - потребления схемы небольшое, и поэтому решено запитать схему по простому - пара стабилитронов (применил 1N4712), пара ограничивающих резисторов (1.5 kom у меня), небольшие электролиты по питанию и шунтирующие конденсаторы по 0,1 мкф - все это к основному питанию УНЧ сабвуфера (+-35 вольт в моём случае).

Монтаж выполнен на печатной плате из текстолита - скачать файл . Печатку немного подкорректировал под себя и добавил стабилитроны. Все элементы подписаны, наводите курсор на элементы - показывается его номинал. Переменные резисторы, регулирующий частоту среза и регулировки громкости, в моём варианте выведены с платы на проводках.

Схема работает сразу, делал уже раз десять этот ФНЧ - естественно если не путать номиналы и не оставлять сопельки между дорожек. Также хочу сказать что чувствительности фильтра хватает, чтобы подключать портативные источники звука такие как: сотовый телефон, mp3 плеер и подобные устройства.

Приготовили плату? Тогда берём паяльник, и первым делом запаивайте стабилитроны с ограничивающими резисторами и конденсаторы, панельку для TL-ки. Подключите плату к источнику питания вашего УНЧ (у меня +-35 вольт) - удостоверьтесь что к 4 и 11 ножки микросхемы на панельки поступает +-12 вольт. Если всё правильно - паяем конденсаторы, резисторы.

Не забываем, что конденсаторы нужно ставить пленочные в такие схемы, не считая электролитов и шунтирующих по питанию.

Переменный резистор, на регулировку среза частоты - нужно подключать именно как нарисовано по схеме. Повторюсь, что схема не нуждается в настройках, правильный монтаж и чистка платки от флюса, если использовали упомянутый.

Теперь в своих конструкциях сабвуферов, всегда использую этот фильтр за его хорошее качество баса и простую схему. Также без лишних ненужных наворотов. Рекомендую, как говорится к повторению, с вами был Akplex .

Обсудить статью НЧ ФИЛЬТР ДЛЯ САБВУФЕРА

Психоакустика (наука, изучающая звук и его влияние на человека) установила, что человеческое ухо способно воспринимать звуковые колебания в диапазоне от 16 до 20000 Гц. При том, что диапазон 16-20 Гц (низкие частоты), воспринимается уже не самим ухом, а органами осязания.

Многие меломаны сталкиваются с тем, что большинство поставляемых акустических систем не удовлетворяет их потребности в полной мере. Всегда находятся мелкие недоработки, неприятные нюансы и т.п., которые побуждают собирать колонки с усилителями своими руками.

Возможны и другие причины сборки сабвуфера (профессиональный интерес, хобби и т.п).

Сабвуфер (от англ. «subwoofer») – низкочастотный динамик, который может воспроизводить звуковые колебания в диапазоне 5-200 Гц (в зависимости от типа конструкции и модели). Может быть пассивным (использует выходной сигнал с отдельного усилителя) или активным (оснащается встроенным усилителем сигнала).

Низкие частоты (басы) в свою очередь можно разделить на три основные подвида:

  • Верхние (англ. UpperBass) – от 80 до 150-200 Гц.
  • Средние (англ. MidBass / мидбасы) – от 40 до 80 Гц.
  • Глубокие или подбасы (англ. SubBass) – все что ниже 40 Гц.

Фильтры частот применяются как для работы активных сабвуферов, так и пассивных.

Преимущества активных низкочастотных динамиков заключается в следующем:

  • Активный усилитель сабвуфера не нагружает дополнительно акустическую систему (так как питается отдельно).
  • Входной сигнал может фильтроваться (исключаются посторонние шумы от воспроизведения высоких частот, работа устройства концентрируется только на том диапазоне, в котором динамик обеспечивает наилучшее качество передачи колебаний).
  • Усилитель при правильном подходе к конструкции может гибко настраиваться.
  • Исходный спектр частот можно разделить на несколько каналов, с которыми можно уже работать по-отдельности – низкие частоты (на сабвуфер), средние, высокие, а иногда и сверхвысокие частоты.

Виды фильтров для низких частот (НЧ)

По реализации

  • Аналоговые схемы.
  • Цифровые устройства.
  • Программные фильтры.

По типу

  • Активный фильтр для сабвуфера (так называемый кроссовер, обязательный атрибут любого активного фильтра – дополнительный источник питания)
  • Пассивный фильтр (такой фильтр для пассивного сабвуфера лишь отсеивает необходимые низкие часты в заданном диапазоне, не усиливая сигнала).

По крутизне спада

  • Первого порядка (6 дБ/октав.)
  • Второго порядка (12 дБ/октав.)
  • Третьего порядка (18 дБ/октав.)
  • Четвертого порядка (24 дБ/октав.)

Основные характеристики фильтров:

  • Полоса пропускания (диапазон пропускаемых частот).
  • Полоса задерживания (диапазон существенного подавления сигнала).
  • Частота среза (переход между полосами пропускания и задерживания происходит. нелинейно. Частота, на которой пропускаемый сигнал ослабляется на 3 дБ, называется частотой среза).

Дополнительные параметры оценки фильтров акустических сигналов:

  • Крутизна спада АХЧ (Амплитудно-Частотная Характеристика сигнала).
  • Неравномерность в полосе пропускания.
  • Резонансная частота.
  • Добротность.

Линейные фильтры электронных сигналов различаются между собой по типу кривых (зависимости показателей) АЧХ.

Разновидности таких фильтров чаще всего называются по фамилиям ученых, выявившим эти закономерности:

  • Фильтр Баттерворта (гладкая АЧХ в полосе пропускания),
  • Фильтр Бесселя (характерна гладкая групповая задержка),
  • Фильтр Чебышёва (крутой спад АЧХ),
  • Эллиптический фильтр (пульсации АЧХ в полосах пропускания и подавления),

И другие.

Простейший НЧ фильтр для сабвуфера второго порядка выглядит следующим образом: последовательно подключенная к динамику индуктивность (катушка) и параллельно – емкость (конденсатор). Это так называемый LC-фильтр (L — обозначение индуктивности на электрических схемах, а C – емкости).

Принцип работы заключается в следующем:

  1. Сопротивление индуктивности прямо пропорционально частоте и поэтому катушка пропускает низкие частоты и задерживает высокие (чем выше частота, тем выше сопротивление индуктивности).
  2. Сопротивление емкости обратно пропорционально частоте сигнала и поэтому высокочастотные колебания затухают на входе динамика.

Такой тип фильтров – пассивный. Более сложные в реализации – активные фильтры.

Как сделать простой фильтр для сабвуфера своими руками

Как и было сказано выше, самые простые в конструкции – пассивные фильтры. Они имеют в составе всего несколько элементов (количество зависит от требуемого порядка фильтра).

Собрать свой собственный фильтр НЧ можно по готовым схемам в сети или по индивидуальным параметрам после подробных расчетов требуемых характеристик (для удобства можно найти специальные калькуляторы для фильтров разных порядков, с помощью которых можно быстро рассчитать параметры составляющих элементов – катушек, емкостей и т.п.).

Для активных фильтров (кроссоверов) можно использовать специализированное программное обеспечение, например, такое как «Crossover Elements Calculator».

В некоторых случаях при проектировании схемы может понадобиться фильтр-сумматор.

Здесь оба канала звука (стерео), например, после выхода с усилителя и т.п., необходимо сначала отфильтровать (оставить только НЧ), а потом объединить в один с помощью сумматора (так как сабвуфер чаще устанавливается всего один). Или наоборот, сначала суммировать, а затем отфильтровать НЧ.

В качестве примера возьмем простейший пассивный НЧ фильтр второго порядка.

Если сопротивление динамика будет 4 Ом, предполагаемая частота среза – 150 Гц, то для типа фильтрации по Баттерворту нужны будут.